GUIDE TO INSTALLING SOLAR PV FOR BUSINESS AND INDUSTRY ## WHY INVEST **IN SOLAR PV?** **Electricity prices have increased** over the last few years, resulting in increased operational expenses for businesses. On the other hand, the cost of solar photovoltaic (PV) systems has declined, making solar an increasingly affordable option for businesses. By installing a PV system, you will be able to offset your electricity consumption and hedge against future price rises. **Although systems may require** a large up-front capital cost, payback periods are typically around 5 to 10 years. This guide details the key steps you will need to undertake to install solar PV at your business. The use of solar photovoltaic (PV) panel systems has grown significantly in Australia this decade, and is now an increasingly affordable option for Australian businesses looking to hedge against the rising cost of electricity. Solar PV systems generate power by converting the energy in sunlight to electricity. This conversion takes place within modules of specially fabricated materials that make up the solar panels. In most cases solar PV panels are connected to the mains power supply through a device called an inverter. With a wide range of products and suppliers on the market, being an informed consumer has never been more important. This guide, intended for businesses and industry wanting to install a solar PV system, provides an introduction to the technology and navigates the process for commercial-scale solar system installation. ## **TOP FIVE TIPS FOR PURCHASING SOLAR PV** **UNDERSTAND THE ELECTRICITY CONSUMPTION OF YOUR BUSINESS AND CHOOSE THE RIGHT SIZE SYSTEM FOR YOUR NEEDS** > Your consumption profile will determine the viability of solar PV for your business and help you decide what size system is appropriate. **UNDERSTAND YOUR ELECTRICITY TARIFFS AND HOW THEY MIGHT** CHANGE > The business case for investing in a solar PV system will depend on what electricity tariffs you pay and how these may change once your system is installed. Make sure you get all the information you need from your electricity retailer. **FIND A SOLAR PV RETAILER** Check if the company is a CEC Approved Solar Retailer and make sure they only use CEC-accredited installers with experience in commercial systems. This will be critical to the design and installation of your system. DO YOUR DUE DILIGENCE ON **TECHNOLOGY, PRODUCTS, WARRANTIES AND GUARANTEES** > There is a diverse range of products on the market that vary in price and quality. Make sure you do your homework on both the products you purchase and workmanship guarantees. **ENGAGE WITH YOUR ELECTRICITY DISTRIBUTOR EARLY TO UNDERSTAND GRID CONNECTION REQUIREMENTS** > Connection to the grid should be discussed with your electricity distributor very early in the process so that they are aware of the project and you, or your accredited installer, are aware of any technical requirements that have to be met from an early stage. ## STAND-ALONE **SOLAR PV SYSTEMS** ## **GRID-CONNECTED SOLAR PV SYSTEMS** ## **HOW MUCH DO SOLAR PV SYSTEMS COST?** Depending on where your business is located, you may wish to install a stand-alone solar PV system. Stand-alone systems are not connected to the electricity grid and are typically installed in remote areas where there is limited connection to the grid, or areas of low electricity demand. Unlike grid-connected systems, stand-alone systems must have batteries or back-up generation to provide supply at night. In many cases, stand-alone systems will also be backed up by a diesel or petrol generator to supplement energy supply. Solar PV systems that are connected to the grid operate by transforming the electricity generated by the solar system (which is direct current (DC)) into alternating current (AC) electricity using an inverter, so that the power generated is compatible with the grid and ordinary business needs. Businesses with solar PV systems use solar power first before sourcing electricity from the grid. When the panels are not producing enough power to meet load requirements, the balance is drawn from the grid. This would be the case at night or on an According to Australian Safety Standards, if the grid is down, for example during a blackout, the inverter will shut down and the solar system will not produce any energy. For systems with a battery backup, the inverter regulates the charge of batteries. The electricity stored in the batteries can be used at night or during blackouts. #### **HOW MUCH POWER DO SYSTEMS GENERATE?** The output of a solar PV system depends on its efficiency, size and location. Commercial systems can range anywhere from 5 to 10 kilowatts (kW) up to a few megawatts (MW). This table shows the average daily production of some common grid-connected system sizes throughout Australia. The rated output is that achieved in perfect laboratory conditions. The CEC design summary software takes these de-ratings into account when predicting averages for any given system. Panels generate more electricity in summer than in winter and the table reflects the average daily electricity generated over a year. | AVERAGE DAILY PRODUCTION | | | | | |---------------------------------|--------|---------|---------|---------| | CITY | 10 KW | 50 KW | 100 KW | 150 KW | | ADELAIDE | 42 kWh | 210 kWh | 420 kWh | 630 kWh | | ALICE SPRINGS | 50 kWh | 250 kWh | 500 kWh | 750 kWh | | BRISBANE | 42 kWh | 210 kWh | 420 kWh | 630 kWh | | CAIRNS | 42 kWh | 210 kWh | 420 kWh | 630 kWh | | CANBERRA | 43 kWh | 215 kWh | 430 kWh | 645 kWh | | DARWIN | 44 kWh | 220 kWh | 440 kWh | 660 kWh | | HOBART | 35 kWh | 175 kWh | 350 kWh | 525 kWh | | MELBOURNE | 36 kWh | 180 kWh | 360 kWh | 540 kWh | | PERTH | 44 kWh | 220 kWh | 440 kWh | 660 kWh | | SYDNEY | 39 kWh | 195 kWh | 390 kWh | 585 kWh | | Source: Clean Energy Council da | | | | | Solar PV systems vary in price and the CEC strongly recommends that you do your research on the technology, installer and warranty to ensure you get the most out of your system based on your needs. You may wish to consider monitoring and after sales maintenance agreements for larger investments. #### The price of your solar PV system can be affected by a range of different factors, including: - government rebates and support schemes - location - number of panels - orientation of panels and whether tilt frames are required - type, quality and efficiency of panels - type, quality and efficiency of inverter - system design and configuration - shipping costs for equipment and parts - contractor installation costs - after sales service agreements - · monitoring equipment and agreements - costs of the grid-connection process and equipment needed to connect - removal of trees or other shading - type of roofing (for example, tiled, tin or concrete) - height and accessibility of roof - site preparation needs (for example, condition of roof or ground) - structural engineering, architectural and other professional services - existing infrastructure upgrades (for example, distribution board, meter or cabling) - council approval The table below provides an approximate guide on the price range for grid-connected solar PV systems in Australia's major capital cities, bearing in mind the factors above. Government rebates such as Renewable Energy Certificates have already been factored into these figures and prices include GST. #### **ESTIMATED SYSTEM PRICE** | SYSTEM SIZE | PRICE RANGE | |-------------|-----------------------| | 10 kW | \$12,000 - \$15,000 | | 30 kW | \$30,000 - \$38,000 | | 50 kW | \$50,000 - \$64,000 | | 100 kW | \$101,000 - \$115,000 | Any quote you receive should itemise the cost of the components and services included in your system. #### In particular you should clarify: - whether government rebates have been included or not - whether an estimate of grid connection costs has been included. Grid connection may add up to 20 per cent to the capital cost of the system, depending on the size of your system and the requirements of your electricity distributor. ### IS SOLAR PV RIGHT FOR MY BUSINESS? The load profile (typical electricity consumption over a day) and electricity tariff are the main two factors that will determine the value of solar PV for your business. Understanding your energy consumption is the first step in determining if solar PV is a viable investment. A detailed and professional analysis of your consumption patterns compared to the expected generation from your solar system should be provided by your CEC-accredited designer during the design and specification stage as part of their load analysis. This process is crucial because it forms the basis of the financial returns from your system. Also, some state and federal programs offer energy assessments for businesses either through government departments or business chambers. Check with your state government for more information. #### **MATCHING SUPPLY AND DEMAND** As the financial reward for exporting energy to the grid is currently quite low, you are likely to receive the largest benefits from your solar system through 'self-consumption', which means you need to consume less electricity from the grid at a higher price. So, it is important that your installer matches your system size to your average consumption. Your CEC-accredited designer should present various sizing alternatives that suit your facility and load profile, and discuss with you the projected economic return on investment of each alternative. # WHAT ARRANGEMENT DO I CURRENTLY HAVE WITH MY ELECTRICITY RETAILER? The business case for installing a solar PV system depends heavily on your current and future electricity tariff. ## It is important to understand the following: - What tariff are you on? (flat/time of use) - What are your peak and off-peak rates, and at what times do they apply? - Are you on a fixed-term contract? - If so, when does the contract expire? - Does your energy contract have a minimum consumption clause and any associated penalties? - How will your tariffs change once you install a system? Your installer should assist you in this process by providing modelling that you can use to negotiate with your retailer. It is strongly recommended that you get written confirmation from your electricity retailer on what, if any, changes will occur to your tariffs under the proposed new arrangements. ## BUSINESS CASE FOR SOLAR PV In addition to your load profile the economics of installing a solar PV system will In addition to your load profile, the economics of installing a solar PV system will depend on a range of factors including system cost, output, estimated savings and desired return on investment. #### **RETURN ON INVESTMENT** Solar PV systems are becoming increasingly affordable, and in many cases offer an attractive internal rate of return (IRR). Comparing the IRR to other potential investments (e.g. leaving the money in the bank or investing elsewhere) will help your business compare the solar investment to others and make an informed business decision. To optimise the return on your solar installation, you should determine the total lifetime cost of a solar installation and total energy generated, and then compare this to what you would spend with your current electricity provider during that same period. In addition, you should consider any taxation and depreciation advantages for businesses that invest in solar equipment when calculating financial return. An experienced CEC-accredited designer will be able to analyse your retail tariffs and current usage profile to propose a system that optimises your return on investment. Your financial manager is most suited to calculate the IRR, taxation and depreciation potential based on the designer's proposal and internal business treatment of that expenditure. A very simple example for illustrative purposes is given over the page. This example should not replace the analysis performed by your designer. ## CAN I SELL EXCESS ENERGY BACK TO THE GRID? Yes, but you need to consider the financial incentive to do so. The rate received for any power exported will depend on your electricity retailer and location, as commercial feed-in tariffs vary between states and territories. Feed-in tariffs are discussed in more depth in the 'resources and incentives' section of this guide. #### **TAX TREATMENT** You will need to consider the tax implications of any income received to subsidise the up-front capital cost of installing your system or revenue received via a feed-in tariff. If you treat your system as a depreciable asset, any associated income may be taxable. Also, the Australian Taxation Office (ATO) considers the supply of electricity from a solar owner to an electricity retailer as a separate supply to your purchase of electricity. If your business is registered for GST, it is likely that you will be liable for GST on all exported energy. If you choose a solar lease or finance arrangement, the rental for your solar PV system may be tax deductible. We recommend that you contact your accountant or the ATO for advice: ato.gov.au ## A SMALL BUSINESS CONSUMING 50,000 KILOWATT HOURS PER ANNUM THAT INSTALLS A 15 KW SYSTEM CAN DISPLACE AN AVERAGE OF 33 PER CENT OF ITS ELECTRICITY USAGE. The exact savings in electricity costs will vary depending on the nature and location of the business and the electricity tariffs available. # SMALL BUSINESS **EXAMPLE** Business A is a small Sydney-based company with an annual electricity consumption of around 50,000 kWh. The business operates five days a week, Monday to Friday, and is located in a single-storey commercial premises with a north-facing roof that can accommodate a PV system. The company is on a standard flat tariff of 26.18 c/kWh. An analysis of Business A's daily electricity consumption including seasonal variation shows a maximum load of around 15 kW on weekdays. On weekends there is still a baseload of around 3 kW. After talking with a CEC-accredited designer, Business A decides to install a 15 kW system. This has: **System cost = \$40,000** Average daily solar generation = 58.5 kWh/day The average daily usage on weekdays is approximately 175 kWh per day. This means that the solar generation will offset around 33 per cent of existing consumption, generating a daily cost saving of: 58.5kWh/day X 26.18 c/kWh = \$15.31 per day The solar PV system will also offset around 18 kWh of baseload consumption on weekend days equating to a daily cost saving of: 18 kWh/day X 26.18 c/kWh = \$4.71 per day The total average annual savings are = \$15.31 x 260 + \$4.71 x 105 = \$4475.15 per annum This means that the system cost of \$40,000 is recovered in approximately 9 years. Note this is a very basic example that doesn't take into account factors such as depreciation, rising costs of electricity, rebates and financing. If electricity prices are assumed to increase 3 per cent annually, using a 7 per cent discount rate the IRR for the ## DO I NEED TO OBTAIN WHAT IF I DON'T **ANY BUILDING OR COUNCIL PERMITS?** ## **OWN MY BUILDING? ARE THERE OTHER OPTIONS?** As every building is unique, you may or may not be required to obtain building and planning approval through your local council. We recommend that you seek advice from your local planning body as early as possible. #### **Factors to consider include:** - state building codes and regulations - whether your property is within a conservation or heritage overlay - the classification of your building under the Australian Building Code (Class 2-9 buildings may be subject to different approval requirements) - the size and position of your solar PV system - the total weight of your panels at any one point of attachment to the building - the design of your system - structural integrity of your building - whether additional electrical or building work is required to accommodate the solar system. At the very least, your CEC-accredited installer will need to complete a building survey to ensure the panels will not compromise building integrity. A common barrier to businesses installing solar PV systems is building ownership. As solar PV systems are long-term investments and involve making amendments to the building, it can be difficult for tenants to secure landlord permission and long-term finance arrangements. You may wish to explore the option of establishing an agreement with your body corporate or landlord as part of your lease terms. This agreement could determine the responsibilities of both you and your landlord in installing and maintaining a solar PV system. The Federal Government has a range of resources on Green Leases available online at environment.gov.au/energy/ efficiency/non-residential-buildings/green-leases If you are on a medium- to longer-term lease but cannot afford the upfront cost, you may be able to explore solar leasing arrangements, which are discussed later in this guide. If you are unable to install solar PV panels on your building but wish to source part of your business's electricity from renewable sources, then you should explore GreenPower options greenpower.gov.au A Renewable Energy Certificate is a measurement of renewable energy that can be traded or sold for a monetary value. Australia's Renewable Energy Target, introduced in 2001, requires energy retailers to purchase a set amount of certificates each year, so there is a constant demand for these certificates. Depending on the size of your system, you will be eligible to create certificates under either the Small-scale Renewable Energy Scheme (systems under 100 kW) or the Large-scale Renewable Energy Target (systems above 100 kW). Certificates under the Small-scale Renewable Energy Scheme (SRES) are called Small-scale Technology Certificates (STCs). One STC is equivalent to one megawatt hour of electricity generated by your solar PV system. The price of STCs changes according to market conditions. As an owner of a solar PV system, you can register, sell, trade or surrender STCs for systems up to 100 kW. #### There are two ways you can be paid for your STCs: - **1.** Assign your STCs when you purchase your solar PV system to a registered agent in exchange for a financial benefit. This may be in the form of a delayed cash payment or upfront discount on your solar PV system (most consumers take this option and usually this will be outlined in your quote). - **2.** Create the STCs yourself by finding a buyer and then selling and transferring them in the Renewable Energy Certificate (REC) registry. For a list of registered agents, contact the Clean Energy Regulator (CER): cleanenergyregulator.gov.au/ret The REC Agents Association is another good source of information: recagents.asn.au Installers or retailers typically manage the application as part of your installation agreement. STCs may be created for solar PV systems in batches of either one-, five- or 12-year deeming periods. At the beginning of each successive one- or five-year deeming period, the CER must be satisfied that your solar PV system is still installed and is likely to remain functional for the next deeming period. In order to claim STCs for the full 12-year deeming period upfront - which is the most common option your designer/installer must be accredited by the Clean Energy Council. More information is available from the CER website: cleanenergyregulator.gov.au/ret The amount you will receive for your STCs will depend on a number of factors, including the location (also known as the zone) of the solar PV system, the size of the system and the price of STCs at the time the system was installed. Australia is divided up into various zones based on how much renewable energy can be generated by a solar panel in a given area. So the same size system installed in Melbourne or Hobart (zone 4) receives fewer STCs than those installed in Sydney (zone 3) or Darwin (Zone 2) because Melbourne and Hobart have less sunshine, so less solar energy is produced. The table below shows the average level of financial support available from STCs on solar PV systems in the major capital cities of Australia. #### If your system is above 100 kW, you can claim under the Largescale Renewable Energy Target (LRET). To participate in LRET you must formally register as a power station with the CER. Once you are accredited you will have a REC Registry account through which you can create Large-scale Generation Certificates One LGC is equivalent to one megawatt hour of generation above a specified baseline for the power station. Unlike STCs, LGCs can only be created once the generation has been proven, and need to be validated by the CER. Once this has occurred, you may sell your certificates to purchasers of electricity (such as your retailer) who have liabilities under the RET. As you cannot deem your certificates upfront, participating in the LGC market can be more administrative work than STCs. To create certificates: - The CER will assess LGCs on a monthly, quarterly or annual basis only. - You must create LGCs for generation by the end of the calendar year following the year of actual generation. - You are required to submit documentation on generation data to verify and calculate eligible electricity generated. (You must ensure you have adequate metering arrangements to collect this data, usually required on a half-hourly basis.) - You must also ensure your LGCs are correctly created in the REC registry. - As an accredited RET power station, you are also obligated to submit an Electricity Generation Return report annually to the CER. See the CER website for further details cleanenergyregulator.gov.au/ret Once you have created and registered your certificates, you need to find a buyer, which may be either a liable entity (such as an electricity retailer) or a registered LGC Trader. #### Once you find a buyer. you will need to: - Negotiate the volume and price of the LGCs you wish to sell, and the method of payment (if you sell to your electricity retailer they may wish to credit your electricity bill rather than make direct payment). - Enter into an agreement with the buyer, understanding that the sale of LGCs is a contract for the sale of goods and so must be accompanied by the appropriate documents. - Once payment has been received, you will need to transfer your LGCs within the REC Registry to the buyer. The negotiation of price and payment for your LGCs is your responsibility and the CER will not facilitate this process nor will they get involved in any disputes. The price of LGCs is set by the market, not the CER. Updated information on the price can be found on the websites of LGC traders, for example: greenenergytrading.com.au/resources/ certificates-prices #### **SMALL-SCALE TECHNOLOGY CERTIFICATES** - LEVEL OF FINANCIAL SUPPORT | CITY | ZONE | RATING | SYSTEM
SIZE | DEEMING
PERIOD | TOTAL STC ENTITLEMENT | TOTAL SUBSIDY | |--------------------------------|-----------------------|------------------------|---------------------|-------------------|-----------------------|----------------------------| | ADELAIDE | 3 | 1.382 | 30 kW | 12 years | 497 | \$17,395 (497 STCs x \$35) | | BRISBANE | 3 | 1.382 | 30 kW | 12 years | 497 | \$17,395 (497 STCs x \$35) | | CANBERRA | 3 | 1.382 | 30 kW | 12 years | 497 | \$17,395 (497 STCs x \$35) | | DARWIN | 2 | 1.536 | 30 kW | 12 years | 552 | \$19,320 (552 STCs x \$35) | | HOBART | 4 | 1.185 | 30 kW | 12 years | 426 | \$14,910 (426 STCs x \$35) | | MELBOURNE | 4 | 1.185 | 30 kW | 12 years | 426 | \$14,910 (426 STCs x \$35) | | PERTH | 3 | 1.382 | 30 kW | 12 years | 497 | \$17,395 (497 STCs x \$35) | | SYDNEY | 3 | 1.382 | 30 kW | 12 years | 497 | \$17,395 (497 STCs x \$35) | | The total STC entitlement = 70 | ne ratina*rated nower | output (30 kW)* deemin | a period (12 years) | | | | ### **FEED-IN TARIFFS** ## CLEAN **ENERGY FINANCE CORPORATION** Feed-in tariffs (FiTs) pay you for the electricity generated by your solar PV system on either a net or gross basis. Tariffs vary between states and territories, and are not mandated in all jurisdictions. Tariffs are usually available for residential systems and do not necessarily extend to commercial customers. However, in most cases, you should be able to negotiate a rate with your retailer. Under a net feed-in tariff, you are paid for any excess electricity generated by your solar panels that goes back into the grid, over and above what you have consumed. So if you have surplus energy generated by your solar panels, you get paid for it, but if you use all of the energy you generate it will be offset against your normal electricity bill. Net feed-in tariffs are the most common arrangement. Under a gross feed-in tariff you get paid for every unit of electricity generated by your solar panels, regardless of whether it goes into the grid or is used by your business. You need to apply to your electricity retailer to receive a feed-in tariff. When signing an agreement with your electricity retailer, it's important to be aware of all the terms and conditions. In particular, you should check with your electricity retailer about any tariff changes that will occur as a result of installing solar and carefully weigh up the advantages and disadvantages before making a decision. This should be considered before you make any changes to your tariffs. #### Important questions to ask about feed-in tariffs include: - What price will your retailer pay you for electricity exported (in cents per kWh)? - What is the cost of the electricity you purchase from your retailer (in cents per kWh)? - Will you lose your off-peak rates by moving onto a higher 'time of use' tariff? - · What will be the form of payment for electricity you produce? (It is likely you will receive the feed-in tariffs you earn by default as a credit on your electricity bill rather than cash.) - What is the upper threshold on system size to be eligible for feed-in tariffs? - Is there a threshold on the volume of electricity you can sell? - Will your metering need to be upgraded so you can receive the feedin tariff, and are there any costs involved? - How will excess energy be calculated and summed? (e.g. instantaneously, daily or quarterly) Other important questions to ask when signing an agreement with your electricity retailer are discussed in further detail later in this document. The Clean Energy Finance Corporation (CEFC) works with banks and other financiers to deliver a range of costeffective financing solutions to help businesses reduce energy consumption, improve productivity and lower emissions through investing in solar PV. This finance is available for projects ranging from \$10,000 to \$5 million, offers discounted interest rates on lease and loan products and the financial terms can be tailored to suit both individual solar PV installations and business cash flow. Further information is available on the CEFC website: cefc.com.au ## OTHER GRANTS AND ASSISTANCE # OTHER FINANCING OPTIONS State and local governments often offer grants and assistance to businesses wishing to implement energy efficient options. VICTORIA The City of Melbourne administers the Sustainable Melbourne Fund sustainablemelbournefund.com.au #### **ENVIRONMENTAL UPGRADE AGREEMENTS** Environmental or Building Upgrade Agreements (EUAs) give commercial and industrial building owners the ability to invest in clean energy and environmental improvements via competitive finance with long-term repayments. EUAs bring together building owners, councils and financiers, offering finance at a fixed interest rate with no upfront spend and loan terms of up to 10 years. Energy savings can be used to fund the repayments, which are made via quarterly council rates. EUAs are available in selected local council regions across NSW, Victoria and South Australia, with other states also looking to implement similar programs. #### **TAX BREAKS** Under the tax reforms effective from 1 July 2012, small businesses with a turnover of less than \$2 million per annum are eligible to write-off depreciable assets to the value of \$6500. This includes solar PV systems. #### **SOLAR LEASING** Many companies now offer structured finance solutions for businesses that wish to install solar PV but would prefer to retain their own cash and use finance to fund the purchase costs. The most common arrangement is solar leasing, which consists of an operational or finance lease for use of the system equipment. System rentals may be tax deductible if they are considered to be an operating expense. Solar leases can be facilitated by PV installers or manufacturers and may involve partnership with a credible financing partner. Upon application, the financial viability of your business will be assessed, as will the bankability of the solar PV installation. When researching which retailer and/or manufacturer best suits your needs, ask them what finance options they offer. Lease terms and inclusions will vary between providers. Leases are generally five to 10 years with monthly payments, but can be tailored to your business needs. During the lease term, the supplier is responsible for the monitoring and maintenance of your system. At the end of the lease, the ownership of the solar PV system may be transferred to your business, but this will depend on your agreement. There are a number of different finance options for commercial solar systems, which suit different types of businesses and each with pros and cons. We recommend you seek independent financial and taxation advice to determine the most suitable financial product. # **FINDING A SOLAR PV RETAILER** AND CEC-ACCREDITED INSTALLER/DESIGNER **DESIGN AND FEASIBILITY** Finding the right person or company to manage the design and installation of your solar PV system is important. Although there is no physical difference between PV panels installed on residential and commercial properties, installation and inverter requirements can be quite different, so you need to ensure that your installer has the relevant experience for your system size. The Clean Energy Council has developed the Approved Solar Retailer program, and companies that have signed on to the scheme can be identified by their use of the Clean Energy Council Approved Solar Retailer logo. Approved Solar Retailers have demonstrated their commitment to a higher level of quality and service, as well as a five-year, whole-of-system warranty. It is also important to ensure that your solar PV retailer only uses CECaccredited installers/designers. Solar PV systems come with some responsibilities for the owner, including learning the basic safe operation and proper maintenance of your system or ensuring you have an ongoing maintenance agreement in place. Online and mail-order solar PV system suppliers who never visit your business may have difficulty recommending the most appropriate equipment. A comprehensive, on-site solar and load analysis and two-way interview can help ensure a thoughtfully-designed and wellplanned installation. We strongly recommend you do your due diligence and select a reputable solar PV retailer that will use a CEC-accredited installer/designer. To find a CEC Approved Solar Retailer, visit approvedsolarretailer.com.au To find an accredited installer near you, visit solaraccreditation.com.au/consumers/find-an-installer.html Your designer will tailor your PV system based on how much electricity you wish to offset and the physical properties of your premises. #### They will help you: - establish your electrical loads over an average day using a load analysis - determine the type of panels - determine the size of your solar PV system - decide the type of inverter - establish the location of solar panels in relation to angles, available sunlight, shading and temperature - determine what building surveys need to be performed. As part of the design and feasibility, your installer should give you an indication of what you can expect in terms of the performance of your system and the factors that may influence this. # **7** PRODUCT SELECTION ## 4 QUOTATION AND AGREEMENT # 5 APPLY FOR ANY BUILDING APPROVALS CONNECTING TO THE GRID Your designer/installer will help you choose the type of panels and inverter that best suit your needs. An inverter is a device that transforms the electricity generated by your solar panels from direct current (DC) to alternating current (AC) electricity, which is used by the grid. There are numerous products on the market and they all vary in their quality and characteristics so make sure you ask your designer/installer if you are unsure. ## When making your selection you should consider the following: - Do the products meet Australian Standards? - Do the other balance of system components that your designer/ installer suggests, like the mounting hardware, meet industry standards? - What warranties and guarantees come with the products? How do the warranties and guarantees compare to other products on the market? (Solar PV panels generally come with two distinct warranties: performance and product.) - Performance warranties will include a warranted degradation factor over time. Degradation factors and time periods will vary between manufacturers so it is important to compare the value of each performance warranty as warranted degradation is a reflection of expected energy over time. - Which warranties are your responsibility and which are the manufacturer's responsibility? - The financial strength of the company providing the warranty will be a reflection of their ability to honour the warranty in the event of panel under performance or failure. Following the design and specification, you should request a detailed quotation for the installation of the system including a contract with the terms and conditions of sale. The quotation should provide specifications, quantity, size, capacity and output for the major components including: solar PV modules, mounting frames, structure, inverter, any additional metering or cabling, data-logging, travel and transport requirements, other equipment needed, any trench digging and a system user manual. # Additional to standard contract conditions, you should ensure that the following are included: - clear itemisation of the component costs and whether the total price includes RECs (if system is under 100 kW), new metering changes, connection costs and safety features, system performance estimates (daily, monthly and annual) and system user manual - what REC or STC price you are being offered - the responsibility of each party for all aspects of the process (e.g. building approvals, metering changes, grid connection, retail agreements, other paperwork) - warranties and guarantees, including installer workmanship, schedule of deposit and progress payments - service agreement - provision of a Certificate of Electrical Standards Early in the process you should contact your local planning authority to determine what planning and building permits you will need. Your designer/installer will then be able to take these into account in the design and feasibility stage. A Connection Agreement with your distribution network service provider (DNSP) is mandatory to connect a solar system to the grid. This agreement is a contract outlining the terms of your connection and must be understood and signed by the person responsible for the system post-installation: (i.e. you, the business owner.) Interconnection should be discussed with the distributor very early in the process so that they are aware of the project and you, or your accredited installer, are aware of any technical requirements that have to be met from an early stage. Your installer should assist you with this process. Depending on the size of your system, the characteristics of the local grid you are connecting to and whether you are planning to export excess electricity, the technical requirements of DNSPs may vary substantially. The DNSPs have a responsibility to ensure the safety and reliability of the network for all their electricity customers, and to ensure that any generation connected to the network does not affect this. You should ensure that you consult your DNSP prior to making the decision to invest in solar PV, as they have the right to refuse connection provided they have a sound technical basis for doing so. In some cases, the technical requirements can create high costs and it is important that you get a picture of these costs early in the process. Your designer/installer should be able to facilitate this process and be aware of the benefits of consulting the DNSP early. You may wish to choose an installer who has worked with your local DNSP previously. If you are planning to export electricity generated by your system to the grid, you will also need to negotiate an Export Agreement with your DNSP. As your business will be supplying electricity (but is a non-market generator), there are technical and commercial conditions that you will need to satisfy. # You will need to pay the cost of connection as part of your system cost. The connection cost typically includes: - network connection application fee (which varies by DNSP) - connection feasibility study - network stability study (if required) - cost of network extensions or augmentations specific to connection - metering charges (which varies by DNSP). You need to ensure you are aware of these costs and how they will be charged. As a system purchaser, it is quite reasonable to expect your installer and/or designer to provide you with a compliant system that meets the DNSP's requirements. As the owner, it is your responsibility to ensure that the installer has done so and completed all necessary paperwork and approvals. When your solar PV system is installed, you may also need to have a new meter installed depending on whether you already have a smart or interval meter. This must be installed by a relevant qualified professional, who may be different to your system installer. This may be organised by your accredited designer/installer, your electricity retailer or your electricity distributor. Find out who will organise this for you, how it will be charged and how the new meter may affect your billing rates. # **APPLYING FOR GOVERNMENT REBATES** Depending on the contract, your installer/designer may facilitate the application for government rebates including grants and RECs (if system size is less than 100 kW). If not, these will be your responsibility and you should contact the relevant entities for information on how to apply. # **NEGOTIATING A RETAIL AGREEMENT** DNSPs do not purchase or sell electricity, so even if you have an approved Export Agreement, if you plan on receiving payment for exporting electricity to the grid, you will need to negotiate an agreement with your electricity retailer. Not all electricity retailers offer solar-friendly tariffs so it is best to check and compare the following items prior to entering into an electricity trading agreement. #### **Questions to ask your retailer include:** - What price will they pay you for your electricity (in cents per - What is the cost of the electricity you purchase from them (in cents per kWh) and will you lose your off-peak rates? - What will be the form of payment for electricity you produce? - Will your metering register your net or gross output? - Are there any penalty clauses (termination costs) or other administration fees? - What are the billing/payment periods? - Do you need to organise all the necessary metering changes and what are the associated costs? - How will excess energy be calculated (e.g. instantaneously, daily or quarterly)? Your installer should assist you in this process by providing modelling that you can use to negotiate with your retailer. It is strongly recommended that you get written confirmation from your electricity retailer on what, if any, changes will occur to your tariffs under the proposed new arrangements. ## WHAT IF SOMETHING GOES WRONG? ## **SOLAR PV CHECKLIST** If you have an issue with any solar PV product while it is under warranty, you should first contact the supplier in order to have the product replaced or repaired. If you are unable to contact the supplier, you should contact the manufacturer. Contact details should be provided on the warranty documentation. The Australian Consumer Law also provides a range of protections for consumers in relation to warranties and faults. To find out more about whether your solar installation is covered by the provisions of Australian Consumer Law visit consumerlaw.gov.au The Clean Energy Council deals with complaints involving a breach of the Accreditation Rules. Accreditation Code of Conduct or relevant Australian Standards. Complaints can be registered online at solaraccreditation.com.au The Clean Energy Council does not handle issues of a commercial nature, like warranties. #### The following list outlines who you should contact for different types of issues: - · Commercial matter (e.g. warranty **issues):** contact the Office of Fair Trading (consumer affairs) in your state or territory. business.gov.au/info/run/fair-trading /fair-trading-laws - Safety and technical compliance of your solar PV system: contact the electrical authority in your state or territory. erac.gov.au/index.php?option=com_ content&view=article&id=71&Itemid=474 - · Complaints about your electricity retailer or distributor: contact the Energy Ombudsman in your state or territory. ombudsman.gov.au/pages/making-a-complaint | 1. | | ve you performed due diligence checks on | 4. The products and services | | | |----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------|--| | | you | ur installer/supplier? Is your solar PV retailer reputable - have you checked | | Have you been offered quality products that are well backed in case of warranty support? | | | | | their track record, backers and complaints forums? | | Have you reviewed the warranty terms and conditions? | | | | | Does your installer/designer have CEC Accreditation and current electrical licences and OH&S certification? Is the company a member of the industry association? | | What written service obligations have been included? | | | | \Box | | | Have you been offered workmanship guarantees? | | | | | Is the company a CEC Approved Solar Retailer? | | Has system monitoring been included to allow ongoing performance checks and who is responsible? | | | | | Have you checked ASIC to ensure they are legitimate and currently registered? | | Are the products listed by the CEC as approved for use in Australia? | | | | | What experience do they have in commercial installations? | | Do you understand the limitations to support and | | | | | How long have they been in the solar industry? | | service that are offered? | | | | | How many systems similar to yours has the designer/ | 5. Th | e grid connection and approvals | | | | | installer completed? Are they up-to-date on the newest products, the latest regulatory issues and connection requirements? | | Has your DNSP been contacted and approved connection? Are there connection costs and limitations? | | | | | How well does the designer/installer know your local distribution network service provider (DNSP)? | | Has your retailer been contacted and agreed in writing tany tariff impacts and/or export tariffs? | | | | | Will they conduct the work themselves or subcontract parts out? If so, what contractual agreements are in | | Do you require building approvals and if so have they been sought and approved? | | | | | place to protect you? | | Have metering and connection costs been calculated and agreed? | | | 2. | The | e quotation and contract | C Inf | | | | | | Is it professional and sufficiently detailed? | | ormation and support | | | | | Are the prices typical of industry benchmarks? | Ш | Have you received a detailed final contract including all relevant approvals? | | | | | What is explicitly included and excluded? | | Do you understand exactly what products, services, | | | | | If comparing quotations, am I comparing like for like? | | support and maintenance you are getting and from | | | | | Are all obligations, responsibilities and liabilities clear? | | whom? | | | 3. | The | he financial calculations | | Have you been advised who or where to go to if you a unsatisfied? | | | | | Have they provided a detailed analysis of load and generation? | | Have you received training on system operation and a detailed operations manual? | | | | | Are the returns consistent with CEC guidelines? | | During installation, did you monitor the general | | | | | If financed , have you had independent tax depreciation advice? | | performance, behaviour and installation quality of the installers? | | | | | What, if any, performance guarantees are provided? | | Is the system performing as expected? | | | | | Have you considered alternative methods of finance? | | | | | | | | | | | **CLEANENERGYCOUNCIL.ORG.AU**